
4540 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 6, MARCH 15, 2021

A Multikernel and Metaheuristic Feature Selection
Approach for IoT Malware Threat Hunting

in the Edge Layer
Hamed Haddadpajouh , Member, IEEE, Alireza Mohtadi, Member, IEEE,

Ali Dehghantanaha , Senior Member, IEEE, Hadis Karimipour , Senior Member, IEEE,

Xiaodong Lin , Fellow, IEEE, and Kim-Kwang Raymond Choo , Senior Member, IEEE

Abstract—Internet-of-Things (IoT) devices are increasingly
targeted, partly due to their presence in a broad range of
applications (including home and corporate environments). In
this article, we propose a multikernel support vector machine
(SVM) for IoT cloud-edge gateway malware hunting, using the
gray wolves optimization (GWO) technique. This metaheuristic
approach is used for optimum selection of features distinguishing
between malicious and benign applications at the IoT cloud-edge
gateway. The model is trained with the Opcode and Bytecode of
IoT malware samples (i.e., the training data set comprises 271
benign and 281 malicious Cortex A9 samples) and evaluated using
the K-fold cross-validation technique. We validate the robustness
of the proposed model, in terms of its ability to detect previously
unseen IoT malware samples. We achieve an accuracy of 99.72%
on the combination of the radial basis function (RBF) and poly-
nomial kernels. Moreover, our proposed model only requires 20
s for training in comparison to the previous deep neural network
(DNN) model that requires over 80 s to be trained on the same
data. Overall, the proposed multikernel SVM approach outper-
forms DNNs and fuzzy-based IoT malware hunting techniques, in
terms of accuracy, while significantly reducing the computational
cost and the training time.

Index Terms—Gray wolves optimization (GWO), Internet of
Things (IoT), machine learning (ML) malware hunting, multik-
ernel learning.

I. INTRODUCTION

INTERNET-OF-THINGS (IoT) devices are found in var-
ious settings (e.g., homes and smart cities), and will be

Manuscript received July 1, 2020; revised September 3, 2020; accepted
September 22, 2020. Date of publication September 25, 2020; date of cur-
rent version March 5, 2021. The work of Kim-Kwang Raymond Choo
was supported in part by the National Science Foundation (NSF) under
Award 1925723, and in part by NSF CREST under Grant HRD-1736209.
(Corresponding author: Kim-Kwang Raymond Choo.)

Hamed Haddadpajouh and Ali Dehghantanaha are with Cyber Science
Lab, University of Guelph, Guelph, ON N1G 2W1, Canada (e-mail:
hamed@cybersciencelab.org; ali@cybersciencelab.org).

Alireza Mohtadi is with the Department of Software and IT Engineering,
École de technologie supérieure, Montreal, QC H3C 1K3, Canada (e-mail:
alireza.mohtadi.1@ens.etsmtl.ca).

Hadis Karimipour is with the College of Engineering, University of Guelph,
Guelph, ON N1G 2W1, Canada (e-mail: hkarimi@uoguelph.ca).

Xiaodong Lin is with the School of Computer Science, University of
Guelph, Guelph, ON N1G 2W1, Canada (e-mail: xlin08@uoguelph.ca).

Kim-Kwang Raymond Choo is with the Department of Information Systems
and Cyber Security, the Department of Electrical and Computer Engineering,
and the Department of Computer Science, University of Texas at San Antonio,
San Antonio, TX 78249 USA (e-mail: raymond.choo@fulbrightmail.org).

Digital Object Identifier 10.1109/JIOT.2020.3026660

increasingly common in the foreseeable future. For exam-
ple, Cisco estimated IoT-related device sales revenue would
reach $14.4 trillion by 2022 [1]. Data collected by IoT
devices can be shared directly or via application program-
ming interfaces (API), to facilitate pattern collection, behavior
observation, attack prediction, quality assessment, and other
decision making and policy making [2], [3].

Hence, it is not surprising that attackers are seeking to
exploit vulnerabilities in IoT devices (hardware and soft-
ware) and their implementations. Such vulnerabilities can arise
due to inherent computational limitations, insecure network
protocols, and even using default credentials [4], [5]. An inves-
tigation of ten popular IoT devices, for example, revealed a
number of security issues, such as open telnet ports, outdated
Linux firmware, and unencrypted transmission of sensitive
data [6]. An increasing number of IoT malware have also
been reported in recent years that targeted vulnerable IoT
devices [7], [8]. For example, it was estimated that the Mirai
malware IoT botnet caused more than $4207.03 damage per
hour of operation in 2017 [9], [10].

Malware threat hunting refers to the identification of mali-
cious application(s) or malware within a network environment
normally prior to their execution. Most malware threat hunting
systems use malware analysis techniques to identify malicious
and benign applications [11]. Malware analysis approaches
can be broadly categorized into those based on static analysis
and those based on dynamic analysis [12]. In static analysis,
malicious applications are examined without execution using
static features (e.g., Bytecodes, control flow graph, Opcodes,
strings, and API calls) [13]. In contrast, in dynamic analysis,
the malware sample is executed in a controlled environment
to observe its behavior. Generally, IoT malware threat hunting
uses static analysis. Most IoT communications share similar
patterns, and hence a combination of statistical pattern recog-
nition and machine learning (ML) techniques may offer a
good performance in hunting IoT malware [6]. ML anomaly
detection models can be applied directly to the network com-
munication of IoT devices as well as malware threat hunting.
However, a large number of features in ML algorithms may
result in overfitting during learning time, higher computational
resources consumption, and lower detection accuracy [14].
This phenomenon is known as the high dimensional problem,
and can be addressed using feature selection and feature

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:13:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5952-1228
https://orcid.org/0000-0002-9294-7554
https://orcid.org/0000-0001-7948-4033
https://orcid.org/0000-0001-8916-6645
https://orcid.org/0000-0001-9208-5336

HADDADPAJOUH et al.: MULTIKERNEL AND METAHEURISTIC FEATURE SELECTION APPROACH 4541

extraction algorithms [15]. Feature selection removes redun-
dant or irrelevant features to reduce the size of the data, while
feature extraction transforms a high dimensional data set into
a new space with fewer dimensions [16]. Many feature selec-
tion techniques (e.g., wrappers, filters, and embedder) have
been proposed in the literature. Metaheuristic search algo-
rithms like particle swarm optimization (PSO) and gray wolves
optimization (GWO) are examples of wrappers that are widely
used for feature selection [15], [17]. These approaches attempt
to identify the optimum feature set to improve ML algorithms’
accuracy, and they are less prone to reach the local optima of
the features.

There have also been attempts to perform malware threat
hunting in IoT networks at the edge layer, with the aim of
improving efficiency and minimizing latency. However, edge
layer resources are much more constrained in comparison to
conventional server farms. Resource limitation and diversity
of IoT nodes compound the challenge of threat hunting at
the edge layer. For example, to create a sandbox to run a
malware, to collect dynamic malware data, and then analyze
these sample would be resource demanding, and this would
create a bottleneck situation at the edge layer with current
technologies. Moreover, most IoT devices are running in real
time and hence, threat identification should also be performed
in near real time. Therefore, we posit the potential of static
analysis for threat hunting at the edge-layer in a typical IoT
environment.

In this article, we propose an ML-based threat hunting
model utilizing a multikernel support vector machine (SVM)
as a classifier and GWO module for feature selection. The
novelty of the proposed model lies in the unique combi-
nation of SVM classifier’s kernels for static malware threat
analysis based on Opcode and Bytecode. Patterns in the
static analysis (e.g., string signature, byte-sequence n-grams,
syntactic library call, control flow graph, Opcode frequency
distribution, and syntactic library call) are used for threat
hunting. A summary of the contributions in this article is
as follows.

1) We propose a malware threat hunting mechanism for
cloud-edge gateways in an IoT environment, based on
the multikernel SVM approach (in order to obtain high
detection accuracy and F1 score). Also, we demonstrate
that the proposed model outperforms previous malware
threat hunting models based on fuzzy pattern tree and
maximal-frequent pattern deep recurrent neural network
(RNN).

2) We minimize the computational costs by using a meta-
heuristic feature selection algorithm to extract the opti-
mum feature set from static IoT applications properties
(i.e., Opcode and Bytecode). The proposed optimum
feature selection algorithm significantly reduces both
training and testing times, in comparison to prior deep
RNN malware threat hunting models. In other words,
our system is more practical for malware threat hunting
in the edge layer of IoT networks.

The remainder of the article is organized as follows.
Section II reviews the related literature. The proposed mul-
tikernel treat hunting model is explained in Section III.

Section IV presents the experimental results, followed by the
conclusion in Section V.

II. RELATED WORK

Kang et al. [18] proposed a DL model based on RNN using
applications’ Opcode for malware threat hunting. The authors
used word2vec long short-term memory (LSTM) architecture
for detecting malware, which resulted in the detection accuracy
of 97.59%. In addition, the proposed model has a high com-
putational complexity as using the backpropagation approach
consumes more computational resources.

Cakir and Dogdu [19] presented an ML model that was
trained on the microsoft malware classification challenge data
set Opcodes for training the model. The authors used the
Word2Vec Opcodes operand to create feature vectors based
on a gradient boosting machine (GBM). The proposed model
resulted in the 95% detection accuracy using the five-fold
cross-validation.

Yuxin and Siyi [20] developed a deep belief network (DBN)
model to detect malware. The authors used Opcode property
and employed DBN as an autoencoder to reduce the number of
features. Their proposed feature selection module maintained
the same performance (detection accuracy) compared to the
existing works that use the full feature set.

Santos et al. [21] proposed a model for hunting unknown
malware which utilized opcode sequences. The authors used
weighted term frequency (WTF) for each Opcodes before
applying any classification technique. In addition, their model
leveraged from frequency-based feature selection module for
employing most effective features. In the result, the proposed
model obtained 96% detection accuracy against unknown
malware.

Darabian et al. [22] used the frequent pattern of Opcode
files in IoT devices for malware threat detection. The
authors obtained the accuracy and F-measure of almost
99% with different classification modules like SVM, KNN,
MLP, random forest (RF), DT, and AdaBoost. Moreover,
Haddadpajouh et al. [23] used Opcodes as features set on
a deep RNN model to train a three-layer LSTM network.
The proposed LSTM model achieved a detection accuracy
of 98.18% and 94% by 10-fold cross-validation for seen and
unseen malware, respectively.

Opcode sequences have also received increasing attention in
IoT malware detection because of the promising results based
on Opcodes features. Azmoodeh et al. [24] developed a DL-
based model to detect Internet-of-Battlefield-Things (IoBT)
malware via the device’s Opcode sequence and they achieved
99.68% of accuracy. Dovom et al. [3] proposed a fuzzy pattern
tree ML model for malware threat hunting. The authors applied
Opcode on their proposed model and obtained 99.17% detec-
tion accuracy. Although their proposed model could obtain a
high detection accuracy but the model has a complex structure.

Overall, previous models showed the suitability of using
static properties of executable samples for malware detection
in IoT devices. Although previous works achieved a rela-
tively high accuracy in detecting IoT malware samples, they
are highly complex and incur significant computational and
storage costs.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:13:04 UTC from IEEE Xplore. Restrictions apply.

4542 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 6, MARCH 15, 2021

Fig. 1. Proposed model based on an SVM multikernel engine

III. OUR PROPOSED ML-BASED IOT MALWARE

THREAT HUNTING MODEL

This section presents the proposed ML-based IoT malware
threat hunting model, where we use a multikernel SVM clas-
sifier on an optimum feature set to increase the detection
accuracy while seeking to minimize the computational cost.
Optimum features are selected using the GWO algorithm. As
shown in Fig. 1, our proposed model consists of three mod-
ules, namely, preprocessing, feature selection, and multikernel
threat hunting model (see Sections III-A–III-C).

A. Preprocessing

We used our previously collected real-world IoT malware
data set [23] to evaluate our proposed model. The data set
consists of Cortex A9 cloud-edge gateway application with
training and test sets of 548 and 100 samples, respectively. Due
to a lack of diversity in the cloud-edge device’s applications,
unlike the conventional malware data set, the number of sam-
ples in the data sets is limited. To the best of our knowledge,
this is the only publicly available IoT malware data set col-
lected at the edge layer. The data set offers two static properties
for each sample, namely, Opcode and Bytecode.

1) Opcode: Opcode refers to Operational Code, which is
the instruction interpreted at the hardware layer [25].
For example, ×86 OpCodes refer to microinstructions
that are understandable by Intel ×86 processors. Our
proposed model is optimized to work with Cortex
A9 Opcodes, which are the most widely used opcode
instruction set in IoT devices [23].

2) Bytecode: Bytecode refers to a program code that is
compiled from the source code into a low-level code
designed for efficient execution by software interpreters,
such as java virtual machine [26].

Each property includes sequences of textual data, such
as sequences of operands pop, push, mov, mul,
mov, . . . , ret. Each data set is vectorized before being fed
to our proposed model.

Since Bytecode and Opcode data are sequences of words
and numbers, text mining techniques are suitable for prepro-
cessing activities. Therefore, a word dictionary is generated
from both Opcode and Bytecode for preprocessing the data
sets. TF-IDF is a common metric for indicating how promi-
nent a word in one document as shown in [27]. The preprocess-
ing module computes the occurrences of each specific word
in every Opcode and Bytecode file analyzed. Every word in

the dictionary is counted as a feature that can affect malware
detection. In the proposed model, all Opcode and Bytecode
is transferred into a TF-IDF value to keep the information
about each token (Opcode, Bytecode) in each malware/benign
sample as follows:

TF(s, O) = log
(
1 + f(o,s)

)
(1)

IDF(o, D) = log
N

|s ∈ D : o ∈ S| (2)

TF-IDF = TF(S, O) · IDF(s, o) (3)

where s indicates a given malware/benign sample, o represents
targeted Opcode/Bytecode, D refers to the applied data set, and
N represents the number of sample in the whole data set.

B. Feature Selection

GWO, first introduced in [28], is one of the metaheuris-
tic optimization methods which has been applied in various
fields [29]–[31]. GWO is used to facilitate feature selection as
it offers an optimum feature set to achieve higher accuracy.
Moreover, unlike other feature selection methods, it does not
require any threshold parameters to cut the irrelevant features.
This module works on the assumption that there are three main
types of wolves in nature. The leader is responsible for mak-
ing decisions, and the leader is referred to as Alpha (α). The
second level in the hierarchy of gray wolves are referred to
as Beta (β), and the lowest ranking gray wolves are named
Omega (ω). If a wolf does not belong to one of the wolf
groups, it counts as subordinary or named Delta (δ). In the
GWO, α is considered as the best fitness solution. (β) and
(δ) are the next fitness functions for generating the subopti-
mal solution. In our case, they are used to shuffle the selected
features.

All types of wolves try to find the best/optimum position
for hunting based on several attempts. Therefore, the hunting
process can be summarized in the following equations:

G = |C · Fprey(t) − Fwolf(t)| (4)

F(t + 1) = Fp(t) − A · G. (5)

In the above equation, G is the current position of each
wolf, t indicates the current iteration, F indicates the position
vector, and Fprey is the position vector of the prey. A and C
are coefficients and are introduced in the following equations:

A = 2ar1 − a (6)

C = 2r2. (7)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:13:04 UTC from IEEE Xplore. Restrictions apply.

HADDADPAJOUH et al.: MULTIKERNEL AND METAHEURISTIC FEATURE SELECTION APPROACH 4543

Algorithm 1 Opcode/Bytecode Feature Selection Algorithm
by GWO

1: function FEATURESELECTIONBYGWO(L∗ <list of all
Opcodes>))

2: Initialization:
3: Initialize wolves’ positions, populations, maxIterations;
4: Calculate the feature to class mutual information vector;
5: Calculate the feature to feature mutual information matrix;
6:
7: GWO Optimization Filter-based: � Use mutual

information as a fitness function
8: α: gray wolf with the highest maximum mutual informar-

ion(fitness);
9: β: gray wolf with the second maximum mutual informar-

ion(fitness);
10: δ: gray wolf with the third maximum mutual

information(fitness);
11:
12: GWO Optimization Wrapper-based:
13: while l ¡ maxiteration do
14: for i = 1:populationsize do
15: Update(current gray wolf position) by Eq. (10);
16: i + +;
17: end for
18: Update(a, A, C)
19: Calculate the fitness if all gray wolves;
20: Update(α, β, δ)
21: l = l + 1;
22: end while
23: return α; � the highest fitness (the most important feature)
24: end function

In the above equations, a linearly decreases from 2 to 0 and
r1 and r2 are random vector lied in [0, 1] interval. Therefore,
each type of wolf can find the best position for hunting, which
is in our case finding the optimum features to reach high
detection accuracy, through several iterations as given in (10)

α = |C1 · Fα − F|, β = |C1 · Fβ − F|, ω = |C1 · Fω − F|
(8)

F1 = Fα − A1 · (α), F2 = Fβ − A2 · (β), F3 = Fω − A3 · (ω)

(9)

F(t + 1) = F1,+F2 + F3

3
. (10)

In the above equation, t is the present iteration and Fα , Fβ ,
and Fω are the location vector of the wolves. Hence, in order
to find the best feature set from the IoT data set Opcode and
Bytecode properties, GWO is run as given in Algorithm 1.
In our scenario, the detection accuracy from selected fea-
tures is considered as the best position of the wolves obtained
from (10).

C. Multikernel Threat Hunting Model

The proposed threat hunting model is using a multiker-
nel SVM classifier to detect IoT malware samples. Since the
applied data set includes two classes of samples, the classifi-
cation task is binary. SVM classifier is very suitable for binary
classification problems to draw a good distinction among mal-
ware and benign samples. SVM is a supervised ML classifier
that is defined with a separating hyperplane. In a 2-D space,

this hyperplane can be a line that classifies data into two cate-
gories with the same feature set. In high dimensional problems,
SVM performs a nonlinear process. In these high dimensional
cases, SVM must use multiple kernels to support multiple
dimensions to maximize the margin between the classes and
to reduce the distance between the hyperplane focuses [32].
The common SVM classifier kernels are as follows.

1) Linear Kernel: It is used when data samples of different
class labels can be separated with a simple line as shown in
(11), where x and y are vectors of samples (feature vector) for
kernel function (k)

k(x, y) = xTy. (11)

2) Poly Kernel: It is used to compute the similarity between
two vectors. It also considers cross dimensions as

k(x, y) = (
γ xTy + c0

)d
. (12)

3) RBF Kernel: It calculates the radial basis function (RBF)
kernel(k) between two vectors. Equation (13) represents this
kernel,where γ is the inverse of the standard deviation of the
kernel

k(x, y) = exp
(
−γ ‖x − y‖2

)
. (13)

4) Sigmoid Kernel: It also known as hyperbolic tangent,
comes from the neural networks field, where the bipolar sig-
moid function is often used as an activation function for
artificial neurons. Sigmoid kernel is defined in the following
equation:

k(x, y) = tanh
(
γ xTy + c0

)
(14)

where x and y are the input vectors, γ is slope and c0 is known
as intercept, and d is degree of polynomial.

In this article, to create the optimal multikernel SVM model
every two potential kernels of SVM are combined as shown
in [33]. This combination can be achieved by calculating the
average of every kernel output as

MultiKernel = 1

n

n∑

1

Kerneli(x, y). (15)

After transforming the Opcode and Bytecode files into a
TF-IDF sequential vector, GWO as the feature selection
approach is applied to select the optimal subpart of Opcode
and Bytecode features. The number of iterations and popula-
tion in GWO can be varied based on the number of features.
Therefore, the population was initialized to a size of 30 over
15 iterations for the GWO. Due to the nature of the GWO
techniques, the results are consistent after several iterations,
and the objective function converges into the optimal solution
after multiple runs. To avoid the local minimum phenomena,
the feature selection process is repeated five times to generate
the random starting point. Fig. 2 shows the detection accu-
racy rates of the proposed model on different iteration. For
the Opcode, it can be clearly seen that accuracy converges to
a constant value after the ninth iteration. Moreover, for the
Bytecodes, a constant converged accuracy is reached after the
fifth iteration.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:13:04 UTC from IEEE Xplore. Restrictions apply.

4544 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 6, MARCH 15, 2021

Fig. 2. (a) Detection accuracy in Opcode by GWO over 30 iterations. (b) Detection accuracy of the selected features in Bytecode by GWO over 30 iterations.

TABLE I
TOP 20 SELECTED FEATURES FROM IOT MALWARE OPCODE DATA SET

BY GWO

Table I shows the top 20 selected features of the Opcode
data set based on 30 iterations by the combination of
Polynomial and RBF kernels. At the end of feature selec-
tion iterations, when constant detection accuracy value was
reached, k-fold cross-validation was applied on the training set.

IV. RESULTS AND DISCUSSION

To evaluate the proposed model, we conducted two sets of
experiments. We first evaluated to performance of our model
in detecting the malicious and benign IoT applications using
common ML performance metrics, such as accuracy (ACC),
precision, recall, and F1-Score. Afterward, we compared the
computational costs of our model against two recent ML-based
IoT malware threat hunting models.

All experiments were processed by Python3.6 and
TensorFlow 2.0 [34] environment, which was running on a
PC powered by Intel Core i9 CPU with 32-GB RAM and an
RTX 2080 Ti GPU.

A. Performance Metrics

The performance of the proposed model is evaluated using
the cross-validation technique. The training data set includes
271 benign and 281 malicious Cortex A9 samples. We used
unseen samples of IoT malware to verify the robustness of
the proposed technique. Unseen malware samples are those
collected randomly from VirusTotal by [23] which include 100
Cortex A9 malware samples.

The performance of the proposed model is quantified using
the following standard metrics.

1) True Positive (TP): When a malicious sample predicted
as a malware.

2) True Negative (TN): When a malicious sample predicted
as a goodware.

Fig. 3. F1 score of different combinations of SVM kernels on the unseen
(test) and train data set.

3) False Positive (FP): When a benign sample predicted as
a malicious.

4) False Negative (FN): When a malicious sample pre-
dicted as a goodware.

Based on the above core metrics, the performance of ML
systems can be measured using the following.

Accuracy: Accuracy indicated how the proposed model can
accurately predict malware and benign samples

Accuracy = TP + TN

(TP + TN + FN + FP)
. (16)

Precision: Precision for a certain APT group is the number
of samples in a class that are correctly predicted, divided by
the total number of samples that are predicted

Precision = TP

(TP + FP)
. (17)

Recall: Recall for a certain class, is the number of samples
in a class that are correctly predicted, divided by the total
number of samples in that class

Recall = TP

(TP + FN)
. (18)

F-Score (F1): F-Score is the harmonic mean of precision
and recall. It can be applied as a general classifier performance
metric

F1 = 2 × precision × recall

precision + recall
. (19)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:13:04 UTC from IEEE Xplore. Restrictions apply.

HADDADPAJOUH et al.: MULTIKERNEL AND METAHEURISTIC FEATURE SELECTION APPROACH 4545

TABLE II
EVALUATION METRICS OF POLY-RBF KERNELS BASED

ON THE DIFFERENT NUMBER OF EPOCHS ON THE UNSEEN

DATA SET SAMPLES’ OPCODES

TABLE III
EVALUATION METRICS OF POLY-RBF KERNELS BASED ON THE

DIFFERENT NUMBER OF EPOCHS ON THE UNSEEN DATA SET

SAMPLES’ BYTECODE

TABLE IV
EVALUATION METRICS OF THE POLY KERNELS COMBINATION BASED ON

THE DIFFERENT NUMBER OF EPOCHS ON THE UNSEEN DATA SET

SAMPLES’ BYTECODE

Findings from our evaluation demonstrated that the
proposed model has higher accuracy and lower FP rate with
reduced processing time, compared to the existing work in the
literature. All experiments were applied to both Opcode and
Bytecode representations of the data set samples. Fig. 7 shows
the most promising combinations, in terms of detection accu-
racy for selecting the prominent features from the Opcode and
Bytecode properties.

The performance of the proposed model was evaluated on
different numbers of epochs using the k-fold cross-validation
technique. The different number of epochs lead to the GWO
approach to select different features until we reach to the opti-
mum set (see Tables II–V). Since the GWO uses an iterative
approach to improve accuracy and to find the optimum feature
set, the linear kernel models will be overfitted. Therefore, the
linear kernel results were removed from the final outputs of
the proposed model.

The performance of the model was also evaluated using
Opcode and Bytecodes of unseen malware data set as shown in
Fig. 4. As observed, the highest detection accuracy is achieved
by the RBF and Sigmoid function over Bytecodes. Hence, it
can be concluded that the static properties of the samples were
sparse with a semi-Gaussian distribution of feature space.

Fig. 5 illustrates the precision rate of the proposed multik-
ernel model. As we observe, the multikernel model achieved
the highest precision rate. The proposed model was also evalu-
ated based on recall and F1-score, to show the strength of the
multikernel approach for detecting unseen malware samples
(see Figs. 3 and 6). Fig. 7 shows that the combination of all
kernels reached the highest detection accuracy. Moreover, the

TABLE V
EVALUATION METRICS BASED ON THE DIFFERENT NUMBER OF EPOCHS

FOR THE OPCODE ON THE COMBINATION OF ALL KERNELS

Fig. 4. Detection accuracy of different combinations of SVM kernels on the
test and train data set.

Fig. 5. Precision rates of different combinations of SVM kernels on the test
and train data set.

Fig. 6. Recall rates of different combinations of kernels on test and train
data set.

combination of all kernels prevents the overfitting phenom-
ena [35]. Hence, the proposed model achieved high detection
accuracy with the low false alarm. As shown in Table VI,
the proposed multikernel approach outperforms the other com-
peting approaches in terms of accuracy, precision, recall, and
F1-score.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:13:04 UTC from IEEE Xplore. Restrictions apply.

4546 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 6, MARCH 15, 2021

TABLE VI
COMPARATIVE SUMMARY

Fig. 7. Overall detection accuracy of the combination of kernels on the
unseen malware data set.

Fig. 8. Comparison of training and testing time between the proposed model
and a deep RNN during convergence.

B. Computational Analysis

The SVM classifiers are relaying on the number of free sup-
port vectors and the computational complexity of these model
can be formulated as O(max(n, d) min(n, d)2) [36], where n
is the number of sample and d is the number of dimen-
sion. In contrast, the artificial neural network (ANN)-based
models computational complexity can be formulated as O(n4)

and O(n5) for forward propagation and backward propagation
approaches, respectively. Hence, the proposed model should
have a much lower computational cost due to its computa-
tional order as well as its smaller number of features due to
the optimal feature reduction algorithm.

We compared the computational costs of the proposed
model with two recent ML-based IoT malware threat hunt-
ing models, namely, a deep RNN model [23] and a fuzzy
model [3]. Fig. 8 shows a comparison between the training and
testing time in different epochs of cross-validation between
the proposed model and the deep RNN-based model (LSTM).

Fig. 9. Comparison of the overall computational time of the proposed model
with previous deep RNN and fuzzy pattern tree models.

While the deep model requires more than 1 min to converge,
the proposed model achieves the same conversion in less than
20 s. As we could not access the fuzzy model source code
we were not able to measure its computational time using the
cross-validation process.

However, as shown in Fig. 9, we could compare the overall
computation time (training + testing time) of all three models
[deep neural network (DNN), fuzzy, and our proposed model].
As can be seen, the proposed model overall computation time
is four times less than the deep RNN approach and 50 times
less than the fuzzy approach.

We have shown that our proposed multikernel approach
achieves increased detection accuracy, with the significantly
reduced computational cost.

V. CONCLUSION

IoT devices are increasingly targeted, partly evidenced
by the number of reported attacks and detected malware.
In this article, a multikernel SVM model based on GWO
(a metaheuristic feature selection approach) was designed
to detect malware targeting ARM processors on cloud-edge
devices. Our proposed approach uses malware’s static prop-
erties (Opcode and ByteCode). We designed a preprocessing
module to transfer the textual content of each sample into a
vector using the TFIDF metric. Afterward, a feature selection
module is used to reduce the number of features and mini-
mize the computational costs of the proposed model. Finally,
a multikernel SVM classifier is used to accurately identify IoT
malware. The model achieved a high accuracy rate of 99.72%,
outperforming previous deep learning and fuzzy ML based IoT
malware detection models. Moreover, the computational anal-
ysis of the proposed model showed that the proposed model

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:13:04 UTC from IEEE Xplore. Restrictions apply.

HADDADPAJOUH et al.: MULTIKERNEL AND METAHEURISTIC FEATURE SELECTION APPROACH 4547

converges faster than existing ML systems, such as DNNs and
fuzzy pattern three classifiers.

In the future, we will develop a multikernel approach for
malware threat hunting using other ML algorithms. Moreover,
using multikernel approaches for malware threat attribution is
another potential future research.

REFERENCES

[1] I. Yaqoob, I. Abaker, T. Hashem, A. Ahmed, and S. M. A. Kazmi,
“Internet of Things forensics: Recent advances, taxonomy, require-
ments, and open challenges,” Future Gener. Comput. Syst., vol. 92,
pp. 265–275, May 2019.

[2] F. Hussain, R. Hussain, S. A. Hassan, and E. Hossain, “Machine learning
in IoT security: Current solutions and future challenges,” IEEE Commun.
Surveys Tuts., vol. 22, no. 3, pp. 1686–1721, 3rd Quart., 2020.

[3] E. M. Dovom, A. Azmoodeh, A. Dehghantanha, D. E. Newton,
R. M. Parizi, and H. Karimipour, “Fuzzy pattern tree for edge malware
detection and categorization in IoT,” J. Syst. Archit., vol. 97, pp. 1–7,
Aug. 2019.

[4] H. H. Pajouh, R. Javidan, R. Khayami, D. Ali, and K.-K. R. Choo,
“A two-layer dimension reduction and two-tier classification model
for anomaly-based intrusion detection in IOT backbone networks,”
IEEE Trans. Emerg. Topics Comput., vol. 7, no. 2, pp. 314–323,
Apr./Jun. 2019.

[5] C. D. Mcdermott, F. Majdani, and V. A. Petrovski, “Botnet detection
in the Internet of Things using deep learning approaches,” in Proc. Int.
Joint Conf. Neural Netw. (IJCNN) Rio de Janeiro, Brazil, 2018, pp. 1–8.

[6] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning DDoS
detection for consumer Internet of Things devices,” in Proc. IEEE
Security Privacy Workshops (SPW), San Francisco, CA, USA, 2018,
pp. 29–35.

[7] H. HaddadPajouh, R. Khayami, A. Dehghantanha, K.-K. R. Choo, and
R. M. Parizi, “AI4SAFE-IoT: An AI-powered secure architecture for
edge layer of Internet of Things,” Neural Comput. Appl., vol. 32, pp.
16119–16133, Feb. 2020.

[8] X. Zhang, O. Upton, N. L. Beebe, and K.-K. R. Choo, “IoT botnet
forensics: A comprehensive digital forensic case study on Mirai botnet
servers,” Forensic Sci. Int. Digit. Invest., vol. 32, pp. 51–60, Apr. 2020.

[9] M. Antonakakis et al., “Understanding the Mirai botnet,” in Proc. 26th
USENIX Security Symp. (USENIX Security), 2017, pp. 1093–1110.

[10] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[11] A. N. Jahromi et al., “An improved two-hidden-layer extreme learning
machine for malware hunting,” Comput. Security, vol. 89, Feb. 2020,
Art. no. 101655.

[12] H. Haddadpajouh, A. Azmoodeh, A. Dehghantanaha, and R. M. Parizi,
“MVFCC: A multi-view fuzzy consensus clustering model for malware
threat attribution,” IEEE Access, vol. 8, pp. 139188–139198, 2020.

[13] H. H. Pajouh, A. Dehghantanha, R. Khayami, and K.-K. R. Choo,
“Intelligent OS X malware threat detection with code inspection,” J.
Comput. Virol. Hacking Techn., vol. 14, no. 3, pp. 213–223, 2018.

[14] M. Verleysen and D. François, “The curse of dimensionality in data
mining and time series prediction,” in Proc. Int. Work Conf. Artif. Neural
Netw., 2005, pp. 758–770.

[15] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,”
Comput. Elect. Eng., vol. 40, no. 1, pp. 16–28, 2014.

[16] J. Li et al., “Feature selection: A data perspective,” ACM Comput.
Surveys, vol. 50, no. 6, p. 94, 2018.

[17] Q. Al-Tashi, S. J. A. Kadir, H. M. Rais, S. Mirjalili, and H. Alhussian,
“Binary optimization using hybrid grey wolf optimization for feature
selection,” IEEE Access, vol. 7, pp. 39496–39508, 2019.

[18] J. Kang, S. Jang, S. Li, Y.-S. Jeong, and Y. Sung, “Long short-term
memory-based malware classification method for information security,”
Comput. Elect. Eng., vol. 77, pp. 366–375, Jul. 2019.

[19] B. Cakir and E. Dogdu, “Malware classification using deep learning
methods,” in Proc. ACMSE Conf., 2018, pp. 1–5.

[20] D. Yuxin and Z. Siyi, “Malware detection based on deep learn-
ing algorithm,” Neural Comput. Appl., vol. 31, no. 2, pp. 461–472,
2019.

[21] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas,
“Opcode sequences as representation of executables for data-mining-
based unknown malware detection,” Inf. Sci., vol. 231, pp. 64–82,
May 2013.

[22] H. Darabian, A. Dehghantanha, S. Hashemi, S. Homayoun, and
K. K. R. Choo, “An opcode-based technique for polymorphic Internet
of Things malware detection,” Concurrency Comput., vol. 32, pp. 1–14,
Mar. 2020.

[23] H. Haddadpajouh, A. Dehghantanha, R. Khayami, and K.-K. R. Choo,
“A deep recurrent neural network based approach for Internet of
Things malware threat hunting,” Future Gener. Comput. Syst., vol. 85,
pp. 88–96, Aug. 2018.

[24] A. Azmoodeh, A. Dehghantanha, and K.-K. R. Choo, “Robust mal-
ware detection for Internet of (battlefield) Things devices using deep
Eigenspace learning,” IEEE Trans. Sustain. Comput., vol. 4, no. 1,
pp. 88–95, Jan.–Mar. 2019.

[25] S. Jeon and J. Moon, “Malware-detection method with a convolutional
recurrent neural network using opcode sequences,” Inf. Sci., vol. 535,
pp. 1–15, Oct. 2020.

[26] Y. Ding, X. Zhang, J. Hu, and W. Xu, “Android malware detection
method based on bytecode image,” J. Ambient Intell. Hum. Comput.,
pp. 1–10, Jun. 2020.

[27] J. Ramos, “Using TF-IDF to determine word relevance in document
queries,” in Proc. 1st Instruct. Conf. Mach. Learn., vol. 242. Piscataway,
NJ, USA, 2003, pp. 133–142.

[28] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[29] S. Mirjalili, “How effective is the grey wolf optimizer in training
multi-layer perceptrons,” Appl. Intell., vol. 43, no. 1, pp. 150–161,
2015.

[30] S. A. Davidsen and M. Padmavathamma, “Multi-modal evolutionary
ensemble classification in medical diagnosis problems,” in Proc. IEEE
Int. Conf. Adv. Comput. Commun. Informat. (ICACCI), Kochi, India,
2015, pp. 1366–1370.

[31] S. Saremi, S. Z. Mirjalili, and S. M. Mirjalili, “Evolutionary population
dynamics and grey wolf optimizer,” Neural Comput. Appl., vol. 26, no. 5,
pp. 1257–1263, 2015.

[32] Y. Ma and G. Guo, Support Vector Machines Applications, vol. 649.
Cham, Switzerland: Springer, 2014.

[33] A. Kaveh and P. Zakian, “Improved GWO algorithm for optimal design
of truss structures,” Eng. Comput., vol. 34, pp. 685–707, Oct. 2018.

[34] M. Abadi et al.. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. [Online]. Available: tensorflow.org

[35] F. Aiolli and M. Donini, “EasyMKL: A scalable multiple kernel learning
algorithm,” Neurocomputing, vol. 169, pp. 215–224, Dec. 2015.

[36] L. Bottou and C.-J. Lin. (2007). Support Vector Machine Solvers Large
Scale Kernel Machines. [Online]. Available: https://doi.org/10.7551/
mitpress/7496.003.0003

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:13:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

